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О достаточном условии  
равномерной стабилизируемости  

двумерных линейных управляемых систем  
с локально интегрируемыми коэффициентами 

 

И.В. Инц, А.А. Козлов 
Учреждение образования «Полоцкий государственный университет» 

 
Рассматривается двумерная линейная управляемая система с локально интегрируемыми и интегрально 

ограниченными коэффициентами  

 2
= ( ) ( ) , , , {1, 2}, 0.

m
x A t x B t u x u m t   R R …  (1)  

Управление в системе (1) строится по принципу линейной обратной связи = ( )u U t x  с измеримой и ограниченной 

матричной функцией ( )U t , 0t … . В результате подстановки выбранного управления в исходную систему получится 

однородная система с коэффициентами из того же класса, что и в системе (1)  

 2
= ( ( ) ( ) ( )) , , 0.x A t B t U t x x t  R …  (2)  

В представленной работе доказано, что свойство равномерной полной управляемости системы (1) является 

достаточным условием пропорциональной глобальной управляемости верхнего особого показателя 
0
( )A BU   

соответствующей системы (2) на множестве 0
{ :| | }   R „  при каждом 0

> 0  (теорема 1), т.е. для каждого 0
> 0  

существует число 0
= ( ) > 0l l   такое, что для любого ,  R  0

| | , „  найдется измеримое и ограниченное управление 

( ),U t  0,t …  удовлетворяющее при всех 0t …  оценке ( ) | |U t l „P P  и гарантирующее для верхнего особого показателя 

0
( )A BU   системы (2) с = ( )U U   выполнение равенства 0 0

( ) = ( ) ,A BU A      где 0
( )A  – верхний особый 

показатель системы (2) при ( ) 0.U t   Отрицательность верхнего особого показателя для системы (2) с некоторым 

управлением U  обеспечивает ее равномерную стабилизируемость (все решения системы (2) c управлением U  будут 

стремиться к нулю при t   ). В связи с этим на основании теоремы 1 в настоящей статье установлена также 

равномерная стабилизируемость системы (2) при условии наличия равномерной полной управляемости у 
соответствующей системы (1) (следствие 1). 

Предложенный подход к решению задачи равномерной стабилизируемости двумерных систем (2) позволяет в 
дальнейшем распространить полученные результаты на случай линейных систем (2) произвольной размерности 
фазового пространства. 

Ключевые слова: линейная управляемая система, равномерная полная управляемость, верхний особый (генеральный) 
показатель, равномерная стабилизируемость. 

 

About the Sufficient Condition of Uniform Stabilizability 
of Two-Dimensional Linear Control Systems  

with Locally Integrable Coefficients  
 

I.V. Ints, А.А. Кozlov  
Educational Establishment «Polotsk State University» 

 
In this paper we consider a two-dimensional linear control system with a locally integrable and integrally bounded coefficients  

  2
= ( ) ( ) , , , {1, 2}, 0.

m
x A t x B t u x u m t   R R …  (1)  

The control of the system (1)  is constructed on the principle of a linear feedback = ( )u U t x  with measurable and bounded matrix 

function ( )U t , 0t … . As a result of the lookup of the selected control in the initial system we get a homogeneous closed-loop 

system with coefficients from the same class, as in (1)  

  2
= ( ( ) ( ) ( )) , , 0,x A t B t U t x x t  R …   (2)  
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In the present work it is proved that the property of uniform full controllability of system (1) is a sufficient condition proportional 

global controllability of upper general Bohl exponent 0
( )A BU   of the corresponding system (2) on the set 

0
{ :| | }   R „  in 

any 
0

> 0  (theorem 1), i.e. for each 
0

> 0  exists the number 
0

= ( ) > 0l l   such that for any ,  R  
0

| | , „  there are 

measurable and bounded control ( ),U t  0,t …  satisfying for all 0t …  inequality ( ) | |U t l „P P  and guarantees for upper general 

Bohl exponent 0
( )A BU   of the system (2) with = ( )U U   the realization of the equality 0 0

( ) = ( ) ,A BU A      where 
0
( )A  – upper general Bohl exponent of the system (2) with ( ) 0.U t   Negativity of the upper general Bohl exponent for system 

(2) with some control U  provides uniform stabilizability (all solutions of system (2) with control U  will tend to the zero when 

t   ). In this regard, on the basis of theorem 1 in this article  uniform stabilability of the system (2) is established under 

condition of uniform full controllability of the corresponding system (1) (corollary 1). 
The proposed approach to solving the problem of uniform stabilizability of two-dimensional systems (2) allows further 

dissemination of the obtained results onto the case of linear systems (2) of arbitrary dimension of  the phase space. 

Key words: linear control system, uniform full controllability, upper general Bohl exponent, uniform stabilizability.  
 

усть 
n

R  – вещественное евклидово векторное пространство размерности n  с нормой 

=
T

x x xP P  (здесь символ Т означает операцию транспонирования вектора). Обозначим через 

M
mn

 пространство вещественных матриц размерности m n  со спектральной (операторной) нормой

=1= m ax xA AxP PP P P P , т.е. нормой, индуцируемой на M
mn

 евклидовыми нормами в пространствах 
n

R  

и .
m

R  Положим M := M
nn n

 и обозначим через E  единичную матрицу пространства M
n

. 

Рассмотрим линейную нестационарную управляемую систему  

= ( ) ( ) , , , 0 ,
n m

x A t x B t u x u t  R R …                                                   (1)  

с локально интегрируемыми по Лебегу и интегрально ограниченными матричными коэффициентами 
А и В. Свойство интегральной ограниченности матричных функций ( )A   и ( )B   означает *1, с. 252+, что 

при любом 0t …  для норм этих функций имеют место неравенства  
1 1

( ) < , ( ) < .
t t

t t

A d B d   
 

  P P P P  

Выберем управление u  для системы (1) в виде обратной связи, линейной по фазовым переменным,  
= ( ) ,u U t x                                                                                        (2 )  

где U  – некоторая измеримая и ограниченная ( )m n -матрица. Подставив выбранное управление в 

систему (1), получим замкнутую однородную систему  

= ( ( ) ( ) ( )) , , 0 ,
n

x A t B t U t x x t  R …
                                                     (3)  

матрица коэффициентов которой будет также являться локально интегрируемой и интегрально 
ограниченной матричной функцией. 

Прежде чем перейти к формулировке основных результатов настоящей работы, напомним 
некоторые необходимые нам в дальнейшем сведения из теории характеристических показателей 
Ляпунова (см. напр., *1; 2+) и теории управления асимптотическими инвариантами линейных 
дифференциальных систем *3+. Для этого рассмотрим систему (1) с нулевым управлением, т.е. 
линейную однородную систему обыкновенных дифференциальных уравнений с локально 
интегрируемыми и интегрально ограниченными коэффициентами  

= ( ) , , 0 .
n

x A t x x t R …
                                                          (4)  

Определение 1 [4]. Верхним равномерным показателем Боля [ ]x  произвольного 

нетривиального решения = ( ),x x t  0 ,t …  линейной однородной системы (4) называется число  

1 || ( ) ||
[ ] = lim ln .

|| ( ) ||t s

x t
x

t s x s


   
 

Определение 2 *3, с. 299; 5+. Система (3) называется равномерно стабилизируемой, если для 
каждого > 0  найдется такое измеримое и ограниченное управление : [0, ) M ,

mn
U    что 

верхний равномерный показатель Боля [ ]x  всякого нетривиального решения = ( ),
U

x x t  0 ,t …  

системы (3) с этим управлением = ( )U U   удовлетворяет неравенству [ ] < .x   

П 
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Определение 3 [4; 6]. Верхним особым (генеральным) показателем 
0
( )A  системы (4) 

называется число  

0 1
( ) := lim sup ln (( 1) , ) ,

T k

A X k T kT
T 

 P P                                                (5)  

где ( , )X t s  – матрица Коши этой системы. 

З а м е ч а н и е 1. Верхний равномерный показатель Боля [ ]x  и верхний особый (генеральный) 

показатель 
0
( )A  являются (так же, как и характеристические показатели Ляпунова) 

представителями множества асимптотических инвариантов (см. напр., *2; 3, с. 29–80+ линейной 
системы (4). Все они описывают качественное поведение решений этой системы при .t    Так, 

например, отрицательность верхнего особого (генерального) показателя 
0
( )A  системы (4) 

указывает на ее равномерную (относительно начального момента времени) асимптотическую 
(экспоненциальную) устойчивость *3, с. 61+. Кроме того, известно *7+, что верхний особый показатель 
системы (4) ограничивает сверху верхние равномерные показатели Боля всех нетривиальных 
решений этой системы, поэтому на основании определения 2 отрицательность верхнего особого 
(генерального) показателя у системы (3) с некоторым выбранным управлением U  обеспечивает 
равномерную стабилизируемость этой системы. 

При изучении вопроса о равномерной стабилизируемости системы (3) в дальнейшем будем 
придерживаться подхода представителей ижевской и минской математических школ, 
предполагающего выполнение для системы (1) условия равномерной полной управляемости. 

Определение 4 [5; 8]. Cистема (1) называется равномерно вполне управляемой, если 
существуют такие числа > 0  и > 0,  что при любых 

0
0t …  и 

0

n
x  R  на отрезке 

0 0
[ , ]t t   

найдется измеримое и ограниченное управление ,u  при всех 
0 0

[ , ]t t t    удовлетворяющее 

неравенству 
0

( )u t x„P P P P и переводящее вектор начального состояния 
0 0

( ) =x t x  системы (1) в 

ноль на этом отрезке. 
На основании такого подхода Е.К. Макаровым и С.Н. Поповой была установлена *9; 3, с. 297–299] 

равномерная стабилизируемость системы (3) с кусочно-непрерывными и ограниченными 
коэффициентами в случае интегрируемости с квадратом и кусочной равномерной непрерывности *3, 
с. 264–265+ матрицы .B  Позднее для таких систем В.А. Зайцевым был получен аналогичный 
результат *10+, но уже без дополнительного предположения кусочной равномерной непрерывности 

матрицы ,B  который в дальнейшем им же был обобщен и на системы (3) с кусочно-непрерывными 

и ограниченными коэффициентами и наблюдателем *11+. Эти результаты явились следствием 
наличия у системы (3) свойства глобальной управляемости ее верхнего особого (генерального) 
показателя (при условии равномерной полной управляемости соответствующей системы (1)). 

Определение 5 *3, с. 297; 9+. Верхний особый (генеральный) показатель системы (3) 
пропорционально глобально управляем на множестве 

0
{ :| | }   R „  при каждом 

0
> 0,  если 

для каждого 
0

> 0  существует 
0

= ( ) > 0l l   такое, что для любого ,  R  
0

| | , „  найдется 

измеримое и ограниченное управление : [0, ) M ,
mn

U


   удовлетворяющее при всех 0t …  оценке 

( ) | |U t l


„P P  и гарантирующее для верхнего особого показателя 
0
( )A BU


   системы (3) с 

= ( )U U

  выполнение равенства 0 0

( ) = ( ) .A BU A


     

В данной работе нами получено обобщение вышеуказанных результатов на двумерные системы 
(3) c локально интегрируемыми и интегрально ограниченными коэффициентами, т.е. установлена 
пропорциональная глобальная управляемость верхнего особого (генерального) показателя и, как 
следствие, равномерная стабилизируемость двумерной системы (3) c локально интегрируемыми и 
интегрально ограниченными коэффициентами при условии наличия свойства равномерной полной 
управляемости у соответствующей ей системы (1). 

Материал и методы. Введем ряд необходимых далее соглашений и обозначений. В соответствии 
с объявленными результатами данной работы всюду ниже полагаем = 2n  и {1, 2}.m   
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З а м е ч а н и е 2. Заметим, что если = 1 ,m  то 
2

( ) ( )B t b t  R  для всех 0 .t …  В этом случае, 

полагая 1
= ,

T
u e v  где v  – новое управление, от системы (1) перейдем к системе  

2 2

1
= ( ) ( ) , , , 0 ,x A t x B t v x v t  R R …  

в которой 
1 2
( ) := [ ( ), 0] M .B t b t   Очевидно, что полученная система равномерно вполне управляема 

тогда и только тогда, когда этим свойством обладает система (1) с той же константой   из 
определения равномерной полной управляемости. Поэтому, не ограничивая общности рассуждений, 
в дальнейшем будем рассматривать систему (1), считая 

2
: [0, ) MB    или, что то же самое,  m = 2.  

Пусть 
2 2

R M  – множество всех верхнетреугольных (2 2) -матриц с положительными 

диагональными элементами. Тогда для произвольных чисел > 0r  и 0 < 1 „  через 
2
( , )r R  

обозначим множество матриц 
2 2
( , ) := { R : , det }.r H H E r H   „ …P PR  Пусть ( , ) M

U n
X t s  , 

, 0t s … , – матрица Коши системы (3) с управлением ;U  
0

( , ) := ( , )X t s X t s , , 0t s … , – матрица Коши 

этой же системы с нулевым управлением (или, что то же самое, системы (4)). 
В *12+ нами была доказана следующая 

Лемма 1. Пусть = 2,n  {1, 2}.m   Если система (1)  -равномерно вполне управляема, то при 

любых числах 1r …  и 0 < 1 „  существует такая величина ( , ) > 0,r   при которой для каждого 

k  N  найдутся ортогональные матрицы 
2

= ([2( 1) , 2 ]; , ) M
k

F F k k r     такие, что, какова бы ни 

была последовательность матриц 
2

{ } ( , )
k k

H r 



N

R , существует измеримое и ограниченное 

управление = ( ),U U t  [0, ),t    удовлетворяющее при всех k  N  и [2( 1) , 2 )t k k    оценке 

( ) ( , ) ,
k

U t r H E   „P P P P  при котором для всякого k  N  выполняются равенства 
1

(2 , 2( 1) ) = (2 , 2( 1) ) .
U k k k

X k k X k k F H F   


   

З а м е ч а н и е 3. В *12+ при формулировке леммы 1 (см. следствие 1 этой статьи) оценка на норму 
управления не приводится. Указанная здесь оценка взята из доказательства этого следствия. 

З а м е ч а н и е 4. Последнее равенство в формулировке леммы 1 означает пропорциональную 
равномерную глобальную квазидостижимость системы (3) – более сильное свойство по сравнению с 
условием равномерной глобальной квазидостижимости, введенном в *13+. 

Определение 6. Cистема (3) обладает свойством: 
1) пропорциональной  -равномерной глобальной квазидостижимости относительно 

неограниченного множества 
2

MU , если для любых 1r …  и 0 < 1 „  существует такая 

величина = ( , ) > 0r   , что для всякого 
0

0t …  найдется ортогональная матрица 

0 2
= ( , , ) MF F t r   , при которой для произвольной матрицы 

2
( , )H r  R  существует измеримое 

и ограниченное управление 
0 0

:[ , ]U t t   U , удовлетворяющее при всех 
0 0

[ , ]t t t    оценке 

( ) ( , )U t r H E  „P P P P  и гарантирующее для матрицы Коши ( , )
U

X t s  системы (3) выполнение 

равенства 1

0 0 0 0
( , ) = ( , ) ;

U
X t t X t t FH F 


   

2) пропорциональной  -равномерной глобальной квазидостижимости, если она 
пропорционально  -равномерно глобально квазидостижима относительно множества 

2
= MU ; 

3) пропорциональной равномерной глобальной квазидостижимости, если она пропорционально  

 -равномерно глобально квазидостижима при некотором > 0 . 

Теорема 1. Пусть = 2,n  {1, 2}.m   Если система (1) с локально интегрируемыми и интегрально 

ограниченными коэффициентами  -равномерно вполне управляема, то верхний особый 

показатель системы (3) пропорционально глобально управляем на множестве 0
{ :| | }   R „  

при каждом 0
> 0.  

З а м е ч а н и е 5. Доказательство теоремы 1 будем проводить в соответствии с подходом, 
описанным в работах *3, с. 297–299; 9]. 

Д о к а з а т е л ь с т в о. Пусть дана  -равномерно вполне управляемая система (1). Положим 

:= 2 .   Зафиксируем произвольное число 
0

> 0 . Функция 1e


    является выпуклой при любом 
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,  R  следовательно, для каждого 
0

[0, ]   справедливы соотношения  

0

0

0 0

1
| 1 |= 1 ( 1) = | | .

e
e e e

 

   


 


  „

                                                  

(6)  

При всяком 
0

[ , 0]    также выполняется оценка сверху  

| 1 |= 1 = | | .e e
 

    „                                                           (7)  

Из соотношения 0

0
1 ,e

 
 …  верного в силу неравенств 

0
> 0  и > 0 ,  следует оценка 

0

0

1
.

e
 





„  

Тогда отсюда и из формул (6) и (7) вытекает справедливая при любом 
0 0

[ , ]     оценка сверху  

0

0

1
| 1 | | | .

e
e

 







 „                                                                    (8)  

Зафиксируем произвольное число 
0 0

[ , ].     Положим 2
:= M .H e E




   Очевидно, что H

  – 

верхнетреугольная (2 2) -матрица с положительными диагональными элементами, причем, ввиду 

оценок (8) и определения величины  , для нее выполняются соотношения  
0

0 02

0

1
=| 1 | | | 1 = 1,

e
H E e e e

 

   







   „ „P P

 
0 02 42 2

det = det = = ,H e E e e e
    



 
 …  

означающие включение 2
( , )H r


 R  при 02

:= 1r e
 

  и 04
:= .e

 




 

Так как система (1)  -равномерно вполне управляема, то, ввиду последнего включения, на 
основании леммы 1 найдем ортогональные матрицы 

2
= ([2( 1) , 2 ]; , ) M

k
F F k k r     и измеримое 

и ограниченное управление = ( ),U U t  [0, ),t    удовлетворяющее при всех k  N  и 

[2( 1) , 2 )t k k    оценке ( ) ( , ) ,U t r H E


  „P P P P  что выполняются равенства  

1
(2 , 2( 1) ) = (2 , 2( 1) ) ( , ( 1) ),

U k k
X k k X k k F H F e X k k k




     


      N , 

и, значит, ( , ( 1) ) = ( , ( 1) ), ,
U

X k k e X k k k


       N  

причем величина ( , )r   зависит только от r  и ,  а, значит, ввиду определения двух последних 

величин, только от 
0
.  Тогда отсюда, из формулы (8) и определения величины ,  для нормы 

управления = ( )U U t  при всех 0t …  имеем оценку сверху  

02

0

0

1
( ) = | 1 | ( ) | |=: | | .

e
U t H E e lP P P P

 




     




    „ „

 

Пользуясь формулой (5), вычислим верхний особый показатель 
0
( )A BU   системы (3) с выбранным 

управлением = ( ).U U t  Возьмем последовательность моментов времени = ,
j

T j  .j  N  Тогда 

справедливы равенства  

0 1 1
( ) = ln (( 1) , ) = ln (( 1) , ) =sup suplim limU U j j

T jk kj

A BU X k T kT X k T kT
T T

P P P P
 

   

 

1 1
= ln (( 1) , ) = sup ln (( 1) , ) =suplim limU j j U

j j kkj

X k T kT X k j kj
T j

P P P P 
 

   

1
= ln ( (( 1) , ) ) =suplim

j

j k

X k j kj e
j

 
 



P P  

01
= ( ln (( 1) , ) ) ( ),suplim

j k

j X k j kj A
j

P P    


      

устанавливающие в силу произвольности выбора 
0

> 0  пропорциональную глобальную управляемость 
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верхнего особого показателя системы (3) на множестве 
0

{ :| | }.   R „  Теорема 1 доказана. 

Из замечания 1 и теоремы 1 следует, что если выполнены условия последней теоремы, то систему 
(3) выбором матричного управления ( )U   можно сделать равномерно (относительно начального 

момента времени) асимптотически (экспоненциально) устойчивой. Таким образом, из замечания 1 и 
теоремы 1 вытекает достаточное условие равномерной стабилизируемости двумерной линейной 
системы (3) с локально интегрируемыми и интегрально ограниченными коэффициентами: 

Следствие 1. Пусть = 2,n  {1, 2}.m   Если система (1) с локально интегрируемыми и 

интегрально ограниченными коэффициентами равномерно вполне управляема, то система (3) 
равномерно стабилизируема. 

Заключение. В работе представлено решение задачи равномерной стабилизируемости 
двумерной линейной системы (3) с локально интегрируемыми и интегрально ограниченными 
коэффициентами при условии равномерной полной управляемости соответствующей системы (1). 
Предложенный подход к решению этой задачи позволяет в дальнейшем распространить полученные 
здесь результаты на случай линейных систем (3) произвольной размерности фазового пространства. 

Работа выполнена при финансовой поддержке Белорусского республиканского фонда 
фундаментальных исследований (грант № Ф13М-055). 
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