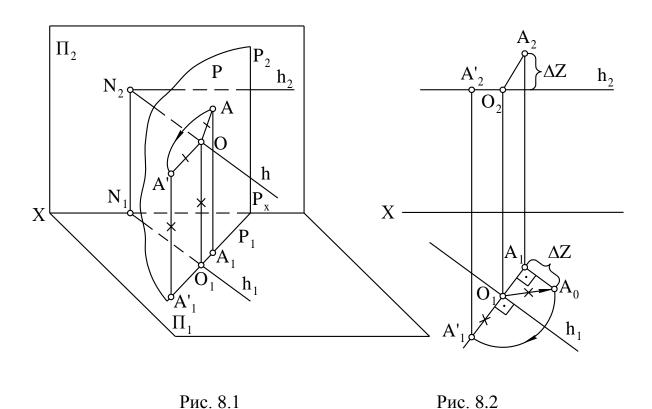
8. СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА

- 8.1. Вращение вокруг оси, параллельной плоскости проекций
- 8.2. Вращение вокруг следа плоскости
- 8.3. Решение метрических задач методами преобразования чертежа

8.1. Вращение вокруг оси, параллельной плоскости проекций

При определении формы и размеров плоских фигур применение метода вращения вокруг оси, расположенной параллельно одной из плоскостей проекций (горизонталь, фронталь), значительно упрощает решение задач по сравнению с другими методами.

Пусть требуется точку A повернуть вокруг некоторой оси h (рис. 8.1), расположенной параллельно плоскости проекций Π_1 , до положения, пока она не окажется на одном уровне с осью h относительно Π_1 , т.е. пока их расстояния до плоскости проекций Π_1 не окажутся одинаковыми.



При вращении точки A вокруг оси h она будет перемещаться по окружности в плоскости P, где O – центр вращения (точка пересечения оси с плоскостью P), ОА – радиус вращения. Плоскость P перпендикулярна к

оси вращения h, следовательно она перпендикулярна и к горизонтальной проекции h_1 оси вращения h, т.е. плоскость P является горизонтально-проецирующей. Поэтому горизонтальная проекция точки A при вращении также будет перемещаться по горизонтальному следу P_1 плоскости P. Чтобы была выполнена поставленная задача, необходимо вращать радиус OA до тех пор, пока он не займет положение параллельное горизонтальной плоскости проекций Π_1 (OA'). В этом случае точка A окажется на одинаковом уровне с осью h относительно плоскости проекций Π_1 . Тогда горизонтальная проекция радиуса вращения $O_1A'_1$ будет соответствовать натуральной величине радиуса вращения OA ($O_1A'_1$ =OA).

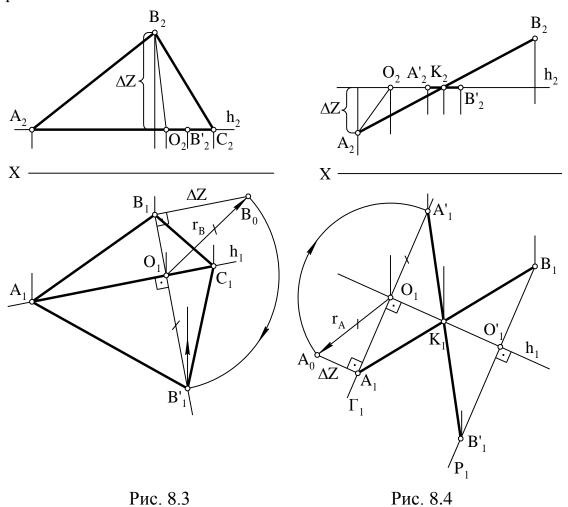
При определении нового положения точки A на чертеже (рис. 8.2) необходимо выполнить следующее: выбрать положение оси вращения h (h_1 и h_2), затем из горизонтальной проекции точки A_1 провести перпендикуляр к горизонтальной проекции оси вращения h_1 , далее определить центр вращения O (O_1 , O_2) и радиус вращения OA (O_1A_1 ; O_2A_2). В заключение необходимо определить натуральную величину радиуса вращения O_1A_0 и отложить его величину от h_1 на продолжении перпендикуляра O_1A_1 , т.е. на горизонтальной проекции траектории перемещения точки A. Получим горизонтальную проекцию A'_1 точки A, которая расположена на одном уровне с горизонталью, поэтому фронтальная проекция A'_2 будет проецироваться на h_2 .

Рассмотрим пример построения натуральной величины треугольника ABC вращением вокруг горизонтали (рис. 8.3).

Сторона треугольника АС расположена параллельно горизонтальной плоскости проекций, поэтому проводим через нее горизонталь h (h_1 , h_2) которая и будет являться осью вращения. Так как точки A и C треугольника находятся на оси вращения, то при вращении они своего положения не меняют. Точка B будет перемещаться в плоскости, перпендикулярной к горизонтали, поэтому из горизонтальной проекции точки B_1 проводим прямую перпендикулярную к h_1 . На пересечении этой прямой c h_1 находится горизонтальная проекция центра вращения O_1 точки O. Фронтальная проекция O_2 определена по линии связи и расположена она на h_2 . Радиусом вращения является отрезок OB (O_1B_1 и O_2B_2). Определив натуральную величину радиуса вращения O_1B_0 , откладываем его на продолжении отрезка B_1O_1 , т.е. на горизонтальной проекции траектории перемещения точки B получим точку B'_1 . B таком положении радиус вращения OB будет расположен параллельно Π_1 поэтому $O_1B'_1$ будет равняться OB. Соединив точку B'_1 с точками A_1 и C_1 , получим горизонтальную проекцию треугольника

 $A_1B'_1C_1$, которая соответствует натуральной величине треугольника ABC, т.к. он в данном случае оказался параллельным Π_1 . Фронтальная проекция треугольника проецируется на фронтальную проекцию горизонтали h_2 ($A_2B'_2C_2$).

При необходимости поворота плоской фигуры параллельно фронтальной плоскости проекций, нужно в качестве оси вращения выбрать фронталь, остальные построения аналогичны, как и при вращении вокруг горизонтали.



На рис. 8.4 показан поворот отрезка прямой AB вокруг горизонтали h, пересекающей данный отрезок в точке K. Точки A и B при вращении перемещаются в горизонтально-проецирующих плоскостях Γ и P (следы Γ_1 и P_1), поэтому из горизонтальных проекций точек A_1 и B_1 проводим прямые перпендикулярные к горизонтальной проекции горизонтали. На пересечении этих прямых с h_1 получим горизонтальные проекции O_1 и O'_1 центров вращения. Проекциями радиусов вращения являются отрезки O_1A_1 и O'_1B_1 . Так как точка K расположена на пересечении отрезка AB и горизонтали h,

то при вращении отрезка она остается на месте. Достаточно определить натуральную величину одного радиуса вращения O_1A_0 и отложить его величину на следе Γ_1 от O_1 . Получим точку A'_1 , которую соединяем прямой с проекцией точки $K(K_1)$, и продолжаем ее до пересечения со следом P_1 , проходящим перпендикулярно от точки B_1 к h_1 .

Полученная проекция отрезка $A'_1B'_1$ является натуральной величиной отрезка AB. Фронтальная его проекция $(A'_2B'_2)$ спроецируется на фронтальную проекцию горизонтали h_2 .

8.2. Вращение вокруг следа плоскости

Вращение плоскости вокруг следа этой плоскости находит применение в тех случаях, когда необходимо, например, определить истинную величину отрезка прямой, плоской фигуры и др., расположенных в данной плоскости. Чтобы добиться этой цели необходимо плоскость вращать вокруг ее следа до совмещения с одной из плоскостей проекций Π_1 или Π_2 . Этот способ еще называется способом совмещения, так как здесь плоскость пространства совмещается (накладывается) с какой либо плоскостью проекций.

Пусть требуется плоскость Γ совместить с плоскостью проекций Π_1 , вращая ее вокруг горизонтального следа Γ_1 (рис. 8.5 a).

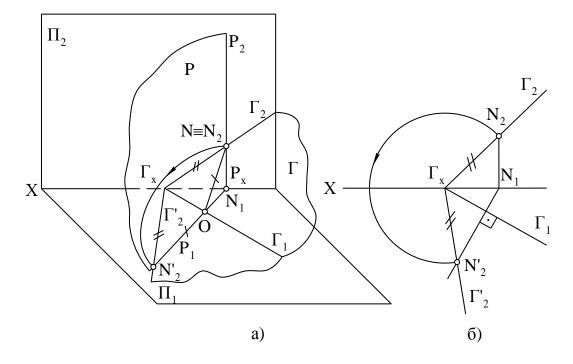


Рис. 8.5

Учитывая, что горизонтальный след Γ_1 плоскости Γ является осью вращения, то при вращении он, а вместе с ним и точка схода следов P_x своего положения не меняют, т.е. остаются на месте. Чтобы найти совмещенное положение фронтального следа Γ_2 , достаточно найти хотя бы еще одну точку в совмещенном положении, принадлежащую следу Γ_2 . Второй точкой будет являться, точка схода следов Γ_x плоскости Γ , так как она принадлежит одновременно фронтальному и горизонтальному следам этой плоскости.

Для решения задачи возьмем на фронтальном следе Γ_2 в произвольном месте точку N (N_2). При вращении она будет перемещаться по окружности в плоскости P, перпендикулярной к горизонтальному следу Γ_1 плоскости Γ , т.е. к оси вращения. Центром вращения является точка O, а радиусом вращения - ON (ON_2). Проведя дугу радиусом ON до пересечения с P_1 получим точку N (N'_2) в совмещенном положении. Соединив точку N'_2 с точкой схода следов Γ_x прямой линией, получим совмещенное положение фронтального следа Γ'_2 , а следовательно и всей плоскости Γ с плоскостью проекций Π_1 . Следует отметить, что при вращении плоскости Γ вокруг горизонтального следа отрезок $\Gamma_x N$ не изменяет своей величины, поэтому совмещенное положение точки N с плоскостью Π_1 можно найти, если из точки схода следов Γ_x сделать засечку радиусом $\Gamma_x N$ на следе P_1 (траектория перемещения точки N).

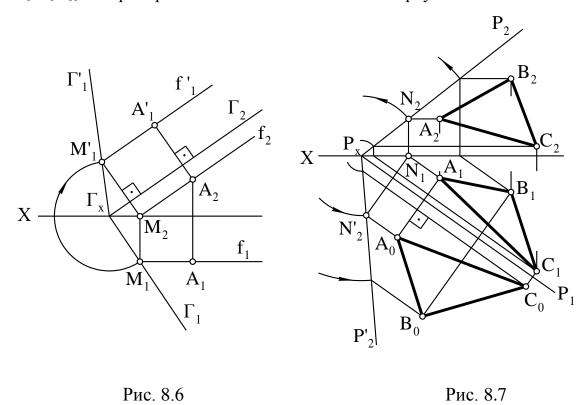
Такое решение приведено на рис. 8.5 б, где из точки схода следов Γ_x проведена дуга радиусом $\Gamma_x N_2$ до пересечения с прямой, перпендикулярной к Γ_1 , проходящей от точки N_1 .

На рис. 8.6 приведено решение задачи на совмещение плоскости Γ и точки A, принадлежащей этой плоскости с плоскостью проекций Π_2 .

Первоначально проводим в плоскости Γ через точку A фронталь f (f_1 , f_2). Затем находим совмещенное положение плоскости Γ с плоскостью Π_2 и совмещенное положение фронтали f_1 , на которой отмечаем совмещенную точку A'_1 .

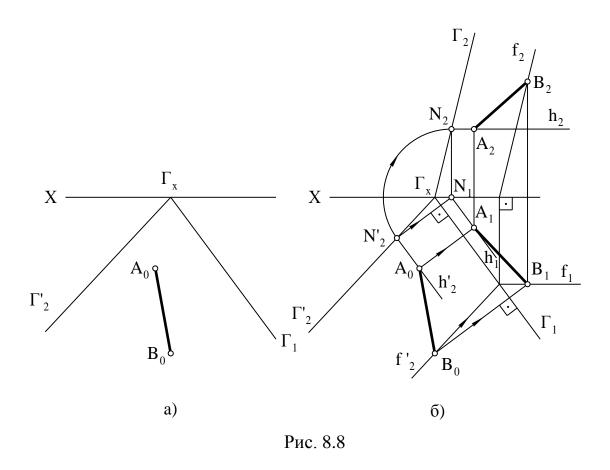
Построение истинной величины треугольника ABC, расположенного в плоскости общего положения P, приведено на рис. 8.7. В данном случае плоскость P, с находящимся в ней треугольником ABC, совмещена с горизонтальной плоскостью проекций Π_1 . Для этого применены горизонтали, проходящие через вершины треугольника. При их совмещении с горизонтальной плоскостью проекций они пройдут параллельно горизонтальному следу P_1 . Точки же A, B и C треугольника ABC будут перемещаться перпендикулярно горизонтальному следу P. На пересечении этих линий с го-

ризонталями и будут находится вершины совмещенного треугольника $A_0 B_0 C_0$, который равняется истинной величине треугольника ABC.



В том случае, если имеется совмещенное положение плоскости Γ (Γ'_2) с плоскостью проекций Π_1 и совмещенное положение отрезка AB (A_0B_0) (рис. 8.8a), а необходимо построить (восстановить) фронтальный след плоскости Γ_2 и проекции отрезка AB, т.е. выполнить действие обратное совмещению, то необходимо первоначально определить положение недостающего следа плоскости в системе плоскостей проекций Π_1/Π_2 , затем найти проекции отрезка.

Чтобы определить положение следа Γ_2 на его совмещенном положении Γ'_2 в произвольном месте возьмем точку N'_2 и найдем ее фронтальную проекцию N_2 (рис. 8.86). Для чего из точки N'_2 проводим перпендикуляр к горизонтальному следу Γ_1 до пересечения с осью X (N_1). Из точки N_1 восстанавливаем перпендикуляр к оси X до пересечения с дугой радиуса $\Gamma'_x N'_2$, получим точку N_2 . Через точку схода следов Γ_x и N_2 проводим фронтальный след плоскости Γ_2 . Затем, через точку A_0 проводим совмещенное положение горизонтали и находим ее проекции, на которые заносим проекции A_1 и A_2 точки A_2 .



Для определения проекций точки B воспользуемся фронталью f (f_1 , f_2). B совмещенном положении проводим ее через точку B_0 параллельно совмещенному фронтальному следу Γ'_2 . Затем находим проекции фронтали f_1 и f_2 , что видно из чертежа и по линиям связи определяем проекции B_1 и B_2 точки B. Соединив A_1 с A_2 и B_1 с B_2 получим необходимые проекции отрезка AB.

8.3. Решение метрических задач методом преобразования чертежа

1. Определить расстояние между двумя параллельными отрезками прямых AB и CD методом замены плоскостей проекций (рис. 8.9).

Для решения данной задачи необходимо выполнить двойную замену плоскостей проекций. При первой замене новую плоскость проекций (ось X_{14}) располагаем параллельно данным отрезкам и перпендикулярно плоскости проекций Π_1 . В новой системе плоскостей проекций Π_1/Π_4 отрезки прямых преобразуются в отрезки уровня и на Π_4 проецируются в нату-

ральную величину. Вторую плоскость проекций располагаем перпендикулярно одновременно к Π_4 и к отрезкам AB и CD, которые проецируются на нее в точки $C_5 \equiv D_5$ и $A_5 \equiv B_5$. $A_5 \equiv C_5$ и $B_5 \equiv D_5$ будет искомым расстоянием между данными отрезками прямых линий.

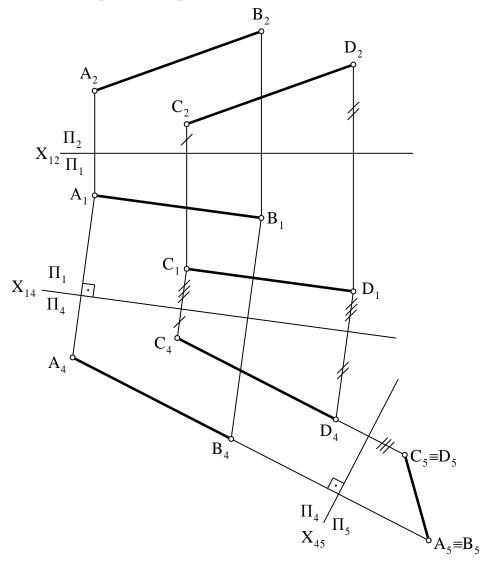


Рис. 8.9

2. Определить расстояние от точки А до прямой СD методом плоскопараллельного перемещения (рис. 8.10)

Объединив точку A в одну плоскость c отрезком CD (на рис. не показано), располагаем эту систему плоскопараллельным перемещением, как вращением вокруг оси перпендикулярной Π_1 , так чтобы отрезок занял положение параллельное плоскости проекций Π_2 . При этом не изменяя величину отрезка и их конфигурацию. Фронтальную проекцию C_2D_2 и A_2 полу-

чим при помощи линий связи и линий перемещения, которые проходят параллельно оси X.

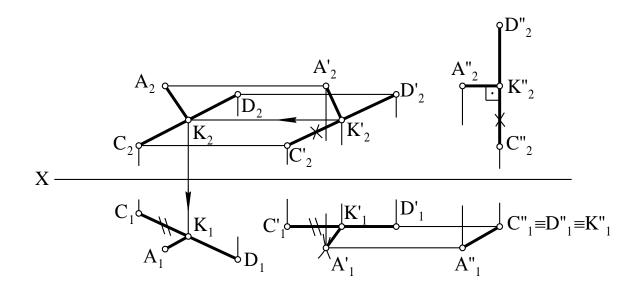


Рис. 8.10

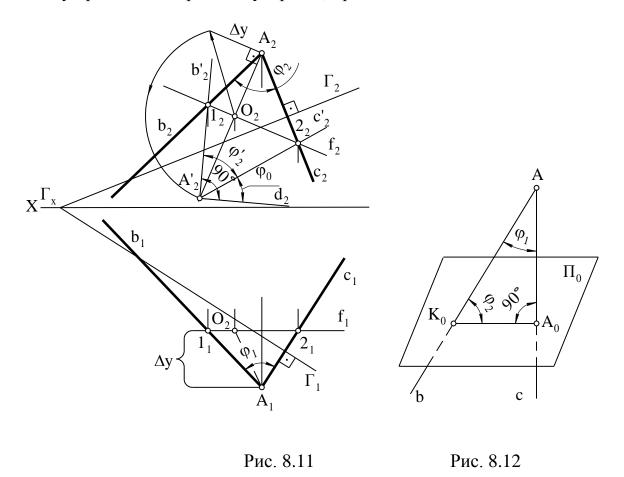
Второе вращение (плоскопараллельное перемещение) выполняем параллельно Π_2 и отрезок CD располагаем параллельно Π_2 и перпендикулярно Π_1 .

В данном случае отрезок CD спроецируется в точку $C"_1\equiv D"_1$, а точка A - в точку $A"_1$. Расстояние между проекциями $A"_1$ и $K"_1$ и есть расстояние от точки A до отрезка CD. Фронтальная проекция точки $K"_2$ определена при помощи прямой, проходящей от $A"_2$ параллельно оси X. Так как $A"_1K"_1$ является истинным расстоянием от точки A до отрезка CD, то фронтальная проекция $A"_2K"_2$ должна быть параллельна оси X. На рис. 8.10 также показаны все проекции расстояния AK.

3. Определить угол наклона прямой b (b_1 , b_2) к плоскостью общего положения Γ , заданной следами (Γ_1 , Γ_2) (рис. 8.11).

С целью упрощения решения задачи при определении угла наклона прямой b (b_1 , b_2) к плоскости Γ воспользуемся нахождением дополнитель-

ного угла между этой прямой и перпендикуляром, проведенным из произвольной точки A, расположенной на прямой b, к плоскости Π_0 (рис. 8.12). Как видно из рис. 8.12 угол ϕ_2 можно определить из прямоугольного треугольника AA_0K_0 . Он равняется ϕ_2 =90°- ϕ_1 , где ϕ_1 дополнительный угол между прямой b и перпендикуляром c, проведенным к плоскости Π_0 .



Для определения угла наклона прямой b к плоскости Γ (рис. 8.11) проводим из точки A (A₁, A₂) перпендикуляр к плоскости Γ_2 , т.е. $c_1 \perp \Gamma_1$ и $c_2 \perp \Gamma_2$, получаем проекции угла, который дополняет до 90° искомый угол между прямой b и плоскостью Γ .

Проведя фронталь $f(f_1, f_2)$ в произвольном месте, но чтобы пересекала прямые b и c, и вращая дополнительный угол $\phi(\phi_1, \phi_2)$ при вершине A до положения параллельного плоскости проекций Π_2 , определим его истинную величину $1_2A'_22_2$. Затем дополняя его до 90° , получим угол ϕ_0 , который равняется $\phi_0 = 90^\circ$ - ϕ'_2 . Этот дополнительный угол и есть угол наклона прямой b к плоскости Γ .