Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/25100
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBohush, R.-
dc.contributor.authorAblameyko, S.-
dc.contributor.authorAdamovskiy, Y.-
dc.date.accessioned2020-06-17T06:22:53Z-
dc.date.available2020-06-17T06:22:53Z-
dc.date.issued2020-
dc.identifier.citationRobust object detection in images corrupted by impulse noise /Rykhard Bohush, Sergey Ablameyko, Yahor Adamovskiy// 2020 CEUR Workshop Proceedings. - S. 1107-1116ru_RU
dc.identifier.urihttps://elib.psu.by/handle/123456789/25100-
dc.description.abstractThis paper proposes two effective normalized similarity functions for robust object detection in very high density impulse noisy images. These functions form an integral similarity estimate based on relations of minimum by maximum values for all pairs of analyzed image features. To provide invariance under the constant brightness changes, zero-mean additive modification is used. We explore properties of our functions and compare them with other commonly used for object detection in images corrupted by impulse noise. The efficiency of our approach is illustrated and confirmed by experimental results.ru_RU
dc.language.isoenru_RU
dc.publisherM. Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen-
dc.subjectSimilarity functionsru_RU
dc.subjectObject detectionru_RU
dc.subjectImpulse noiseru_RU
dc.titleRobust object detection in images corrupted by impulse noiseru_RU
dc.typeArticleru_RU
dc.citation.conferenceComputer Modeling and Intelligent Systems (CMIS-2020)en_EN
dc.citation.spage1107ru_RU
dc.citation.epage1116ru_RU
Appears in Collections:Публикации в Scopus и Web of Science
Машинное обучение. Обработкой изображений и видео. Интеллектуальные системы. Информационная безопасность

Files in This Item:
File Description SizeFormat 
paper83.pdf673.46 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.