Please use this identifier to cite or link to this item:
https://elib.psu.by/handle/123456789/25100
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bohush, R. | - |
dc.contributor.author | Ablameyko, S. | - |
dc.contributor.author | Adamovskiy, Y. | - |
dc.date.accessioned | 2020-06-17T06:22:53Z | - |
dc.date.available | 2020-06-17T06:22:53Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Robust object detection in images corrupted by impulse noise /Rykhard Bohush, Sergey Ablameyko, Yahor Adamovskiy// 2020 CEUR Workshop Proceedings. - S. 1107-1116 | ru_RU |
dc.identifier.uri | https://elib.psu.by/handle/123456789/25100 | - |
dc.description.abstract | This paper proposes two effective normalized similarity functions for robust object detection in very high density impulse noisy images. These functions form an integral similarity estimate based on relations of minimum by maximum values for all pairs of analyzed image features. To provide invariance under the constant brightness changes, zero-mean additive modification is used. We explore properties of our functions and compare them with other commonly used for object detection in images corrupted by impulse noise. The efficiency of our approach is illustrated and confirmed by experimental results. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | M. Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen | - |
dc.subject | Similarity functions | ru_RU |
dc.subject | Object detection | ru_RU |
dc.subject | Impulse noise | ru_RU |
dc.title | Robust object detection in images corrupted by impulse noise | ru_RU |
dc.type | Article | ru_RU |
dc.citation.conference | Computer Modeling and Intelligent Systems (CMIS-2020) | en_EN |
dc.citation.spage | 1107 | ru_RU |
dc.citation.epage | 1116 | ru_RU |
Appears in Collections: | Публикации в Scopus и Web of Science Машинное обучение. Обработкой изображений и видео. Интеллектуальные системы. Информационная безопасность |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
paper83.pdf | 673.46 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.