Please use this identifier to cite or link to this item:
https://elib.psu.by/handle/123456789/28586
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ihnatsyeva, S. | - |
dc.contributor.author | Bohush, R. | - |
dc.contributor.author | Ablameyko, S. | - |
dc.date.accessioned | 2022-01-17T17:58:51Z | - |
dc.date.available | 2022-01-17T17:58:51Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Ihnatsyeva, S. Joint Dataset for CNN-based Person Re-identification / S. Ihnatsyeva, R. Bohush, S. Ablameyko // Pattern Recognition and Information Processing (PRIP'2021): Proceedings of the 15th International Conference, Minsk, 21–24 Sept. 2021. – Minsk : UIIP NASB, 2021. - P. 33-37. | ru_RU |
dc.identifier.uri | https://elib.psu.by/handle/123456789/28586 | - |
dc.description.abstract | In this paper, we propose a joint dataset for person re-identification task that includes the existing public datasets CUHK02, CUHK03, Market, Duke, LPW and our collected PolReID. We investigate the training dataset size and composition effect on the re-identification accuracy. We carried out a number of experiments with different size of dataset to solve re-identification task. The results of experiments are presented. | ru_RU |
dc.language.iso | en | ru_RU |
dc.publisher | UIIP NASB | ru_RU |
dc.title | Joint Dataset for CNN-based Person Re-identification | ru_RU |
dc.type | Article | ru_RU |
Appears in Collections: | Публикации в изданиях Республики Беларусь Машинное обучение. Обработкой изображений и видео. Интеллектуальные системы. Информационная безопасность |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.