Please use this identifier to cite or link to this item:
https://elib.psu.by/handle/123456789/34507
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sharma, Sapna | ru |
dc.contributor.author | Lohchab, Shikha | ru |
dc.date.accessioned | 2022-10-27T12:20:22Z | - |
dc.date.available | 2022-10-27T12:20:22Z | - |
dc.date.issued | 2022 | |
dc.identifier.citation | Sharma, Sapna Finger Vein Biometric Identification Using Transfer learning ConvNet Model / Sapna Sharma, Shikha Lohchab // Информационно-коммуникационные технологии: достижения, проблемы, инновации (ИКТ-2022) : электронный сборник статей II международной научно-практической конференции, Полоцк, 30–31 марта 2022 г. / Полоцкий государственный университет имени Евфросинии Полоцкой ; ред. кол.: О. А. Романов (пред.) [и др.]. – Новополоцк : Полоцкий государственный университет имени Евфросинии Полоцкой, 2022. – С. 168-171. | ru_RU |
dc.identifier.uri | https://elib.psu.by/handle/123456789/34507 | - |
dc.description.abstract | The human brain, can easily perceive and differentiate the objects in an image. Subsequently the field of computer vision intent to mimic / simulate the human vision system. Finger vein-based user authentication has been used to control access and maintaining privacy of confidential data. The main challenges in the finger vein verification are the quality of an acquired images due to uneven illumination of light, quality of sensor, positional variation and environmental condition. In this article, we used Wiener filter, to improve the quality of finger vein images. Then we analysed the performance of these noise free images to some of popular pre trained ConvNet (convolutional neural networks) such as Alex Net, Squeeze Net, Google Net, Shuffle Net, Efficient Net, Mobile Net, Res Net, Dense Net and NAS Net for the finger vein based personal authentication to secure confidential data and maintain privacy. The finger vein images from Kaggle database are used for this research work. The experiment exhibits the outstanding performance of resnet101 with the 97.64% accuracy over its peer networks. | ru_RU |
dc.language.iso | en | ru |
dc.publisher | Полоцкий государственный университет имени Евфросинии Полоцкой | ru |
dc.title | Finger Vein Biometric Identification Using Transfer learning ConvNet Model | ru |
dc.type | Article | ru |
dc.citation.spage | 168 | ru_RU |
dc.citation.epage | 171 | ru_RU |
Appears in Collections: | Информационно-коммуникационные технологии: достижения, проблемы, инновации. 2022 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
168-171.pdf | 792.63 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.