Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/37392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYe, S.-
dc.contributor.authorIhnatsyeva, S.-
dc.contributor.authorBohush, R.-
dc.contributor.authorChen, C.-
dc.contributor.authorAblameyko, S.-
dc.date.accessioned2023-01-18T07:21:06Z-
dc.date.available2023-01-18T07:21:06Z-
dc.date.issued2022-
dc.identifier.citationYe, S. Estimation CNN-Based Person Re-Identification Accuracy in Video Using Different Datasets / S. Ye, S. Ihnatsyeva, R. Bohush, C.Chen, S. Ablameyko // Advances in Transdisciplinary Engineering. – 2022. – Vol. 30. – P. 978–985.ru_RU
dc.identifier.urihttps://elib.psu.by/handle/123456789/37392-
dc.description.abstractThe paper analyses the problem of person re-identification accuracy in distributed video surveillance systems by using various datasets for training convolutional neural networks (CNN). After analysis we constructed large joint image dataset of people consisting of CUHK02, CUHK03, Market-1501, DukeMTMC-ReID, MSMT17 and our collected PolReID. PolReID includes 52035 images for 657 people Experimental results on assessing re-identification accuracy based on the main metrics Rank and mAP are presented. The research was carried out for the most widely used CNNs in re-identification, such as ResNet-50, DenseNet121 and PCB. We show that the constructed large dataset allowed us to improve Rank1, mAP for all test sets.ru_RU
dc.language.isoruru_RU
dc.publisherIOS Pressru_RU
dc.subjectReID systemru_RU
dc.subjectPolReIDru_RU
dc.subjectjoint datasetru_RU
dc.subjectcross domainru_RU
dc.subjectCNNru_RU
dc.titleEstimation CNN-Based Person Re-Identification Accuracy in Video Using Different Datasetsru_RU
dc.typeArticleru_RU
dc.identifier.doi10.3233/ATDE221122-
Appears in Collections:Публикации в Scopus и Web of Science
Машинное обучение. Обработкой изображений и видео. Интеллектуальные системы. Информационная безопасность

Files in This Item:
File Description SizeFormat 
978–985.pdf1.33 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.