Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/22789
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGlukhov, A.-
dc.contributor.authorGlukhov, D.-
dc.contributor.authorTrofimov, V.-
dc.contributor.authorTrofimova, L.-
dc.date.accessioned2018-10-24T08:17:34Z-
dc.date.available2018-10-24T08:17:34Z-
dc.date.issued2016-
dc.identifier.citationGlukhov, A. O. Approximation of complex, multiparameter, essentially nonlinear, dynamic relationships based on genetic algorithms / A. O. Glukhov, D. O. Glukhov, V. V. Trofimov, L. A. Trofimova // Proceedings of the XIX International Conference on Soft Computing and Measurements SCM`2016. St. Petersburg: IEEE, 2016. pp. 252-254, doi: 10.1109/SCM.2016.7519744ru_RU
dc.identifier.urihttps://elib.psu.by/handle/123456789/22789-
dc.description.abstractThe work is focused on usage of genetic algorithms to get more precise approximation of complex and essentially nonlinear dynamic relationships. The algorithms precision was measured based on the model of stock market index prediction.ru_RU
dc.language.isoenru_RU
dc.publisherIEEE-
dc.subjectGenetic algorithmsru_RU
dc.subjectComplexru_RU
dc.subjectMultiparameterru_RU
dc.subjectEssentially nonlinearru_RU
dc.subjectDynamic dependenciesru_RU
dc.subjectStock exchange indexru_RU
dc.titleApproximation of complex, multiparameter, essentially nonlinear, dynamic relationships based on genetic algorithmsru_RU
dc.typeArticleru_RU
dc.identifier.doi10.1109/SCM.2016.7519744-
Appears in Collections:Публикации в Scopus и Web of Science

Files in This Item:
File Description SizeFormat 
252-254.pdf328.21 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.