Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://elib.psu.by/handle/123456789/36160
Название: | Обучение нейронных сетей на основе случайного поиска |
Авторы: | Мацкевич, В. В. Matskevich, V. |
Другие названия: | Neural Networks Training Based on Random Search |
Дата публикации: | 2022 |
Издатель: | Полоцкий государственный университет имени Евфросинии Полоцкой |
Библиографическое описание: | Мацкевич, В. В. Обучение нейронных сетей на основе случайного поиска / В. В. Мацкевич // Вестник Полоцкого государственного университета. Серия C, Фундаментальные науки. - 2022. - № 11. - С. 21-29. 10.52928/2070-1624-2022-39-11-21-29 |
Аннотация: | Рассматривается актуальная проблема, связанная с обучением нейронных сетей. Предлагается оригинальный алгоритм (со специальной процедурой распараллеливания), реализующий метод отжига. Эффективность обучения демонстрируется на примере архитектуры нейронной сети, ориентированной на параллельную обработку данных. Для задачи сжатия цветных изображений показано, что предложенный алгоритм существенно превосходит градиентные методы по эффективности. Полученные результаты позволяют повысить качество обучения нейронных сетей в целом и могут быть использованы для решения широкого класса прикладных задач. |
Аннотация на другом языке: | The paper deals with a state-of-art problem, associated with neural networks training. Training algorithm (with special parallelization procedure) implementing the annealing method is proposed. The training efficiency is demonstrated by the example of a neural network architecture focused on parallel data processing. For the color image compression problem, it is shown that the proposed algorithm significantly outperforms gradient methods in terms of efficiency. The results obtained make it possible to improve the neural networks training quality in general, and can be used to solve a wide class of applied problems. |
URI (Унифицированный идентификатор ресурса): | https://elib.psu.by/handle/123456789/36160 |
Права доступа: | open access |
DOI: | 10.52928/2070-1624-2022-39-11-21-29 |
Располагается в коллекциях: | 2022, № 11 |
Файлы этого ресурса:
Файл | Размер | Формат | |
---|---|---|---|
21-29.pdf | 735.78 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.