Please use this identifier to cite or link to this item:
https://elib.psu.by/handle/123456789/45539
Title: | Enhancing Arabic character recognition via feature engineering and PSO |
Authors: | Sarra, Rouabhi Redouane, Tlemsani |
Issue Date: | 2024 |
Publisher: | Полоцкий государственный университет имени Евфросинии Полоцкой |
Citation: | Rouabhi, S. Enhancing Arabic character recognition via feature engineering and PSO / S. Rouabhi, R. Tlemsani // Информационно-коммуникационные технологии: достижения, проблемы, инновации (ИКТ-2024) : электронный сборник статей III международной научно-практической конференции, г. Полоцк, 29 марта 2024 г. / Полоцкий государственный университет имени Евфросинии Полоцкой. – Новополоцк : Полоцкий государственный университет имени Евфросинии Полоцкой, 2024. – С. 227-237. |
Abstract: | Accurate recognition of handwritten Arabic characters poses significant challenges, especially for non-native learners. With the increasing adoption of digital teaching and distance learning, there is a pressing need for efficient and robust automatic recognition systems for Arabic characters. This work proposes a novel approach to address this challenge. First, handwritten Arabic character images are processed to extract features using two pre-trained deep learning models: EfficientNet B2 and DenseNet 201. The extracted features from these models are then concatenated to form a comprehensive feature set. Subsequently, the Particle Swarm Optimization (PSO) algorithm is employed to identify the most relevant features from this concatenated set through an optimized feature selection process. Finally, the selected features are fed into a classical classifier for character recognition. The proposed approach achieves an accuracy exceeding 90%, demonstrating its effectiveness in recognizing handwritten Arabic characters. |
URI: | https://elib.psu.by/handle/123456789/45539 |
metadata.dc.rights: | open access |
Appears in Collections: | Информационно-коммуникационные технологии: достижения, проблемы, инновации. 2024 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
227-237.pdf | 1.41 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.