Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/47428
Title: The effectiveness of using neural networks and machine learning in teaching physics
Authors: Ali, Askar
Mukhambetzhan, A. M.
Issue Date: 2025
Publisher: Полоцкий государственный университет имени Евфросинии Полоцкой
Citation: Ali, Askar The effectiveness of using neural networks and machine learning in teaching physics / Ali, Askar, A. M. Mukhambetzhan // Актуальные проблемы физики, электроники и энергетики [Электронный ресурс] : электронный сборник статей II Международной научно-практической конференции, Новополоцк, 14 ноября 2024 г. / Полоцкий государственный университет имени Евфросинии Полоцкой. – Новополоцк, 2025. – С. 343-347.
Abstract: Neural networks and machine learning (ML) technologies have seen rapid advancement across various fields, including education. In physics education, these technologies enhance both teaching methods and student learning outcomes through personalized learning, automated feedback, simulations, and data-driven insights. This article explores the applications and benefits of neural networks and ML in teaching physics, addressing their ability to create adaptive learning environments, improve student engagement, and optimize teaching strategies through real-time data analysis.
URI: https://elib.psu.by/handle/123456789/47428
metadata.dc.rights: open access
Appears in Collections:Актуальные проблемы физики, электроники и энергетики. 2024

Files in This Item:
File SizeFormat 
343-347.pdf811.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.