Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/25100
Title: Robust object detection in images corrupted by impulse noise
Authors: Bohush, R.
Ablameyko, S.
Adamovskiy, Y.
Issue Date: 2020
Publisher: M. Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen
Citation: Robust object detection in images corrupted by impulse noise /Rykhard Bohush, Sergey Ablameyko, Yahor Adamovskiy// 2020 CEUR Workshop Proceedings. - S. 1107-1116
Abstract: This paper proposes two effective normalized similarity functions for robust object detection in very high density impulse noisy images. These functions form an integral similarity estimate based on relations of minimum by maximum values for all pairs of analyzed image features. To provide invariance under the constant brightness changes, zero-mean additive modification is used. We explore properties of our functions and compare them with other commonly used for object detection in images corrupted by impulse noise. The efficiency of our approach is illustrated and confirmed by experimental results.
Keywords: Similarity functions
Object detection
Impulse noise
URI: https://elib.psu.by/handle/123456789/25100
Appears in Collections:Публикации в Scopus и Web of Science
Машинное обучение. Обработкой изображений и видео. Интеллектуальные системы. Информационная безопасность

Files in This Item:
File Description SizeFormat 
paper83.pdf673.46 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.