Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/31537
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKazak, Y.ru_RU
dc.contributor.authorEhilevsky, S.ru_RU
dc.contributor.authorGurieva, N.ru_RU
dc.date.accessioned2022-05-10T10:51:02Z-
dc.date.available2022-05-10T10:51:02Z-
dc.date.issued2019-
dc.identifier.citationKazak, Y. Characteristic and Minimal Polynomials In Problems / Y. Kazak, S. Ehilevsky, N. Gurieva // European and National Dimension in Research = Европейский и национальный контексты в научных исследованиях : electronic collected materials of XI Junior Researcher' Conference, Novopolotsk, May 23-24, 2019 : in 3 parts / Ministry of Education of Belarus, Polotsk State University ; ed. D. Lazouski [et al.]. - Novopolotsk : PSU, 2019. - Part 3 : Technology. - P. 201-203.ru_RU
dc.identifier.urihttps://elib.psu.by/handle/123456789/31537-
dc.description.abstractIn linear algebra, the minimal polynomial of an n-by-n matrix A over a field F is the monic polynomial p(x) over F of least degree such that p(A)=0. Any other polynomial q with q(A)=0 is a (polynomial) multiple of p. The following three statements are equivalent: ??F is a root of p(x), ? is a root of the characteristic polynomial of A, ? is an eigenvalue of A. The multiplicity of a root ? of p(x) is the geometric multiplicity of ? and is the size of the largest Jordan block corresponding to ? and the dimension of the corresponding Eigen space. The minimal polynomial is not always the same as the characteristic polynomial.ru_RU
dc.language.isoenru_RU
dc.publisherПолоцкий государственный университетru_RU
dc.titleCharacteristic and Minimal Polynomials In Problemsru_RU
dc.typeArticleru_RU
dc.citation.spage201ru_RU
dc.citation.epage203ru_RU
Appears in Collections:European and National Dimension in Research. Technology. 2019

Files in This Item:
File SizeFormat 
201-203.pdf171.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.