Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/18941
Title: Интегральные преобразования с вырожденной гипергеометрической функцией Куммера и нормированной функцией Бесселя в ядрах и интегральные уравнения первого рода в пространстве суммируемых функций
Authors: Скоромник, О. В.
Other Titles: Integral Transforms With the Confluent Hyperdeometric Function of Kummer and the Cut Bessel Function in the Kernels and Integral Equations of the First Kind in the Space of Summable Functions
Issue Date: 2016
Publisher: Полоцкий государственный университет
Citation: Вестник Полоцкого государственного университета. Серия C, Фундаментальные науки. - 2016. - № 12. - C. 104-110.
Abstract: Рассматриваются три интегральных преобразования с вырожденной гипергеометрической функцией Куммера и нормированной функцией Бесселя в ядрах в пространствах p-суммируемых функций на конечном отрезке [a,b] действительной оси. В работе даются условия ограниченности, описание образов этих операторов, а также устанавливаются формулы обращения. Рассматриваются также три соответствующих интегральных уравнения первого рода с вырожденной гипергеометрической функцией Куммера и нормированной функцией Бесселя в ядрах. Устанавливаются формулы решения исследуемых уравнений в замкнутой форме, даются условия их разрешимости в пространстве интегрируемых функций. Доказанные утверждения обобщают результаты, хорошо известные ранее для соответствующих интегральных уравнений первого рода.= Three integral transforms involving confluent hyperdeometric function of Kummer and the cut Bessel function in the kernels are studied on the spaces of p- summable functions on a finite interval [a,b] of the real line. Mapping properties such as the boundedness, the range of the considered transform are given, and the inversion formulas are established. Three integral equations of the first kind with the confluent hyperdeometric function of Kummer and the cut Bessel function in the kernels also are considered. The solutions of the investigating equations in the closed form are established, and conditions for its solvability in the space of summable functions are given. The results generalize the well know findings for corresponding integral equations.
Keywords: интегральные преобразования
интегральные уравнения
вырожденная гипергеометрическая функция
Государственный рубрикатор НТИ - ВИНИТИ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
математика
integral transforms
integral equations
confluent hyperdeometric function
cut Bessel function
URI: https://elib.psu.by/handle/123456789/18941
metadata.dc.rights: open access
Appears in Collections:2016, № 12

Files in This Item:
File Description SizeFormat 
104-110.pdf192.53 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.