Please use this identifier to cite or link to this item: http://elib.psu.by:8080/handle/123456789/23750
Title: Свойства функции Гамильтона в вариационных задачах со старшими производными
Authors: Пастухов, Ю. Ф.
Пастухов, Д. Ф.
Keywords: Государственный рубрикатор НТИ - ВИНИТИ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Функция Гамильтона
Вариационная задача
Расслоенное пространство скоростей
Уравнения Эйлера – Лагранжа
Гладкие многообразия
Тензор обобщенного импульса
Невырожденный гессиан
Function Hamilton
Variational problem
Stratified space of the velocities
Equations Eylera – Lagranzha
Smooth of the variety
Tensor of the generalised pulse
Nonzero finder of the matrix Gesse
Issue Date: Mar-2019
Publisher: Полоцкий государственный университет
Citation: Вестник Полоцкого государственного университета. Серия C, Фундаментальные науки. - 2019. - № 4. - C. 137-153
Series/Report no.: Серия C, Фундаментальные науки;2019. - № 4
Abstract: Рассмотрены свойства функций Гамильтона и Лагранжа в координатно-импульсном и расслоенном пространстве скоростей. Основным полученным результатом является утверждение – в случае локальной невырожденности матрицы Гессе от функции Гамильтона по импульсам максимального порядка (матрицы Гессе от функции Лагранжа по скоростям максимального порядка) указанные матрицы Гессе взаимно обратны. Получен ряд вспомогательных результатов, например, о квазилинейной форме временной производной порядка k от обобщенной координаты по скоростям расслоенного пространства порядка k для невырожденной замены координат. Получены неожиданные тождества в координатно-импульсном пространстве q-p для частной производной между координатами расслоенного пространства (координата-координата, импульс-импульс). Получены формулы, связывающие частные производные в координатно-импульсном пространстве q-p для функций Лагранжа и Гамильтона по одним и тем же переменным.= The Considered characteristic function Hamilton and Lagranzha in coordinate-pulsed and stratified space of the velocities. The Main got by result is a statement - in the event of local absence of degeneracy of the matrix Gesse from function Hamilton on pulse of the maximum order (the matrixes Gesse from function Lagranzha on velocity of the maximum order) specified matrixes Gesse mutually inverse. It Is Received row auxiliary result, for instance, about quasi linear form of the time derived order k from generalised coordinates on velocity stratified space of the order k for change the coordinates with nonzero finder Yakobi. Unexpected identity are Received in coordinate-pulsed space q-p for quotient derived between coordinate is stratified space (the coordinate- coordinate, pulse-pulse). They Are Received formulas, linking quotient derived in coordinate-pulsed space q-p for function Lagranzha and Hamilton on one and same variable.
Description: PROPERTIES OF THE HAMILTON FUNCTION IN VARIATION TASKS WITH HIGHER DERIVATIVE DERIVATIVES Y. PASTUKHOV, D. PASTUKHOV
URI: http://elib.psu.by:8080/handle/123456789/23750
ISSN: 2070-1624
Appears in Collections:2019, № 4

Files in This Item:
File Description SizeFormat 
Ю.Пастухов_2019-4.pdf325.83 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.