Please use this identifier to cite or link to this item: https://elib.psu.by/handle/123456789/32351
Title: КОНЕЧНЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЯ ПУАССОНА НА ПРЯМОУГОЛЬНИКЕ ПРОГОНКОЙ СТОЛБЦОВ НЕИЗВЕСТНОЙ МАТРИЦЫ С ШЕСТЫМ ПОРЯДКОМ ПОГРЕШНОСТИ
Authors: Волосова, Н.К.
Волосов, К. А.
Волосова, А. К.
Пастухов, Д. Ф.
Пастухов, Ю. Ф.
Issue Date: Apr-2022
Publisher: г. Смоленск
Citation: Волосова Н.К., Волосов К.А., Волосова А.К., Пастухов Д.Ф., Пастухов Ю.Ф. КОНЕЧНЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЯ ПУАССОНА НА ПРЯМОУГОЛЬНИКЕ ПРОГОНКОЙ СТОЛБЦОВ НЕИЗВЕСТНОЙ МАТРИЦЫ С ШЕСТЫМ ПОРЯДКОМ ПОГРЕШНОСТИ//Наукосфера.4-1. 2022. С 25-35.
Abstract: Получен алгоритм численного уравнения Пуассона на прямоугольнике с краевым условием Дирихле методом прогонки столбцов матрицы решения за конечное число элементарных операций с шестым порядком погрешности.Алгоритм обобщен на случай трех различных трехдиагональных матриц в разностном уравнении.В литературе известен алгоритм решения задачи с помощью прогонки строк неизвестной матрицы. Иногда в задачах механики и гидродинамики в методе прогонки необходимо использовать квадратные матрицы минимального порядка по строкам и столбцам прямоугольной матрицы решения по двум причинам.Во-первых, минимальные матрицы уменьшают время решения задачи методом прогонки.Во-вторых, элементы матриц могут зависеть от скорости и координат частиц среды, в этом случае использование квадратных матриц максимального порядка невозможно.Численно подтвержден шестой порядок погрешности алгоритма, написана программа.
Keywords: уравнение Пуассона, метод прогонки, уравнения в частных производных ,гидродинамика, конечные методы.
URI: https://elib.psu.by/handle/123456789/32351
Appears in Collections:Численные методы в инженерных расчетах (1-40 01 01) 2к3с



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.